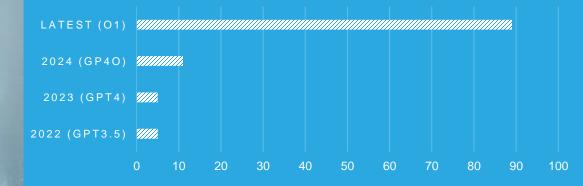
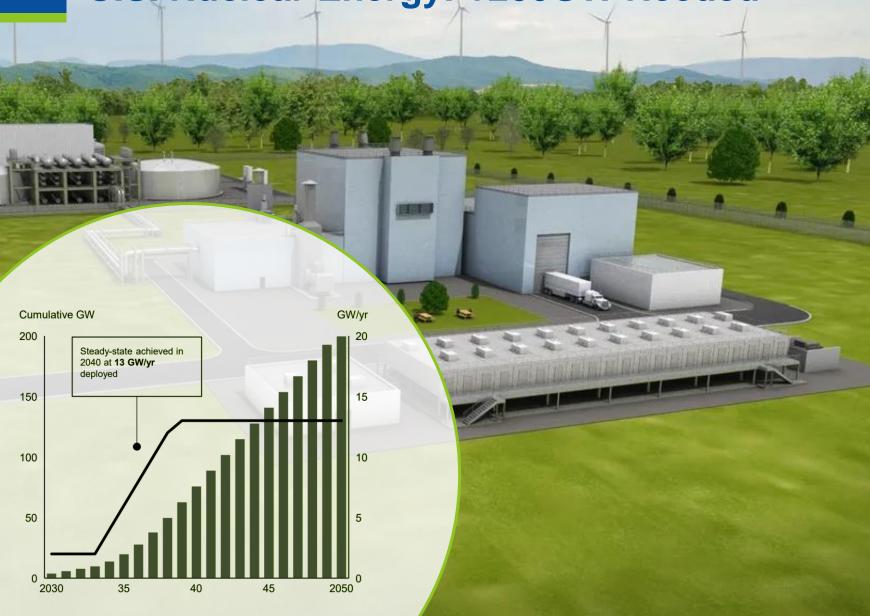
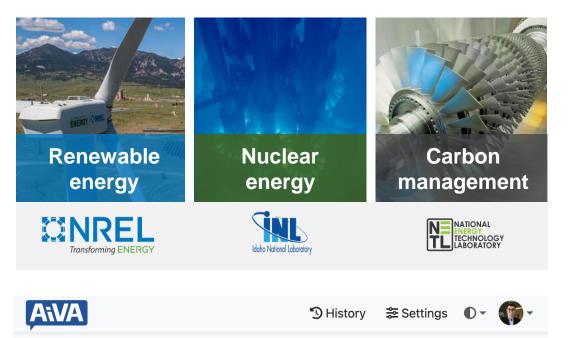

Artificial Intelligence for Applied Energy Applications


Christopher Ritter Director, DICE / Dept. Manager, Digital Engineering, EES&T


PH-D **SCIENCE** QUESTIONS (GPQA DIAMOND) ACCURACY

COMPETITION CODE (CODEFORCES) PERCENTILE

U.S. Nuclear Energy: +200GW Needed


World Outlook

- China intends to build 150
 new nuclear reactors [by]
 2035 [27 under construction]
 ... with timeline ~seven years
 - China has commenced.. the world's first fourthgeneration nuclear reactor
 - Overall, analysts assess that China likely stands 10 to 15 years ahead of the U.S.

Information Technology and Innovation Foundation

China's AI industry could see US\$1.4 trillion in investment in 6 years
 Yahoo! News

Integrating the Expertise of the Applied Energy Labs with AI to Solve the Nation's Energy Challenges

Generate a 3D STL file, with a 10x10ft room, 20x20ft room, and a 40x40ft room?

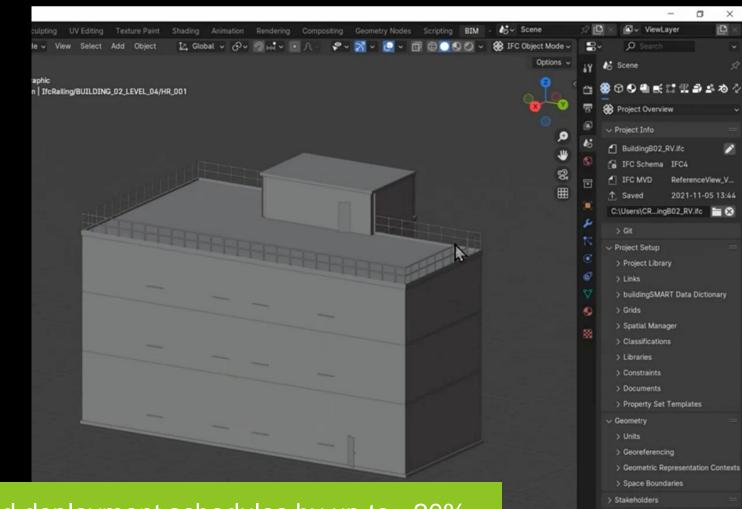
I'm sorry for any confusion, but as a text-based AI, I'm unable to create or generate actual files, including 3D STL files. However, I can guide you through the process of creating these rooms using 3D modeling software like Tinkercad, Blender, SolidWorks, or AutoCAD.

- Deep domain expertise in energy systems at multi-scale
- Share, reuse, and couple models across energy domains
- Fostering a national workforce with interdisciplinary expertise
- Test beds for demonstration of energy AI models
- Integration of training sets and authoritative data to increase model performance
- Close connection with industry and regulators to accelerate the acceptance and uptake of AI technology for energy
- Deep understanding of industry and applied energy challenges
- Responsible for clean energy and achieving national Net Zero goals (native passion)
- De-risk scaling of emerging technology and that these technologies can truly impact clean energy

Generative Als are missing applied energy data and models

Grand Challenge Opportunities

Accelerating Deployment & Licensing


Al-driven Accelerated Irradiation Testing

Autonomous Operations & Maintenance

Integrated Energy Grid & Security

Disaster & Risk Resilience

Accelerating Deployment & Licensing

> Grouping and Filtering

Goal: Reduce design and deployment schedules by up to ~20%

Al-driven Accelerated Irradiation Testing with Autonomous Labs

Background: Material and fuel irradiation capabilities are in high-demand due to NRC licensing requirements.

Purpose: Accelerate irradiation testing, reducing the barrier to entry, and increasing throughput at this critical point in next-generation nuclear reactor deployment.

- "Virtual Irradiation" will revolutionize the material/fuel testing process by allowing companies to quickly iterate on component/test design through an AI-driven interface.
- Semi-autonomous laboratories for post-irradiation examination (PIE) testing using advanced robotics and machine-learning control algorithms
- Al-optimized reactor core power, flux, or cycle duration, based on gas cap size, gas composition, and/or material selection/thickness

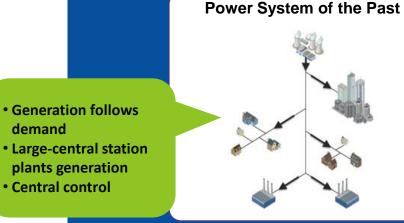
Goal: Accelerate nuclear experimentation and testing

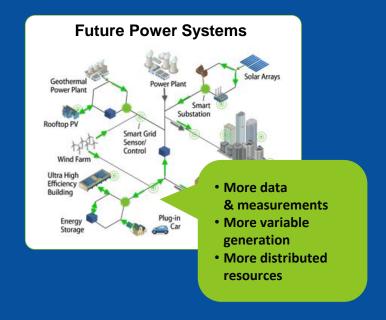
Autonomous Operations and Maintenance

First Autonomously Controlled Non-Nuclear Microreactor First real-time, realworld **digital twin** of a nuclear reactor

Generation follows

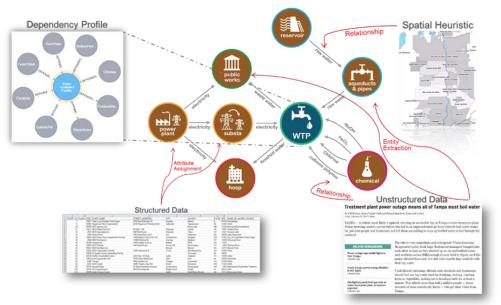
plants generation


Central control


demand

Integrated Energy Grid & Security

- Critical Opportunity: Changes in the Grid are happening for economic and reliability reasons
 - More communications, controls, data, and information increases flexibility but also introduces cyber vulnerabilities
 - Wind, solar, hydrogen, advanced nuclear, etc. are quickly changing the energy mix - variable generation is lowest cost but is weather dependent
 - Distributed, consumer-sited technologies are changing the load (ex. electric vehicles)
 - Both generation and demand are changing and becoming more complex to control for secure, reliable, resilient planning, and operations
- Expected Impacts:
 - Enable transition to future systems with more variable generation and distributed resources
 - Save \$15 billion to \$35 billion* in energy operations costs



Al for Disaster Risk Reduction and Resilience

- Critical Opportunity: Natural disasters and human-caused events are occurring more frequently and with more intensity, significantly impacting the nation.
- Expected Impacts:
 - Increasing our preparation through Al-assisted training and exercises, scenario creation, and planning
 - Facilitating **real-time response via Al-**generated data analytics, visualization, and communication
 - Al-developed recovery strategies including optimization of new infrastructure and modeling of human behavior
 - Collective datasets and AI models on disaster occurrence, past responses, identifying risks, and human impact that span the country and lead to a better understanding of the response and resiliency strategies

Goal: Enhance preparedness, inform faster recovery, and enhance resilience solutions with AI

Frontiers in Artificial Intelligence for Science, Security and Technology (FASST)

Data for AI Training

Development of methods, platforms, protocols, and other tools required for efficient, safe, and effective aggregation, generation, curation, and distribution of AI training datasets.

Next-generation Al Platforms & Computing

Development and construction of next-generation computing platforms and digital infrastructure. Safe & Trustworthy AI Models & Systems

Training, testing, deep understanding and validation of frontier foundation models, enhanced AI model security, privacy enhancing technologies, and other AI tools and systems.

AI Applications

Use AI foundation models and other AI technologies to develop a multitude of tuned and adapted downstream models to solve pressing scientific and national security challenges.

Underpinned by partnerships and workforce

Applied Energy <u>AI Data</u> Leadership

Alexandria

- Plan to store ~100PBs of NNP R&D data
- Led by INL with a 12-lab team
- Integrated data governance for data sharing
- Plan to integrate advanced analytics / Al

Nuclear Research Data System

- Real-time data analysis (stored close to HPC)
- Al super resolution and active detection
- Digital Object Identified (DOI) for projects
- Plan to expand across nuclear R&D data

Applied Energy <u>AI Compute</u>

Use of National Laboratory System Exascale Machines (GPUs)

Custom Compute for Nuclear Multi-Physics (Synthetic Data)

Applied Energy <u>AI Framework</u> Leadership

MOOSE
 Open-source, parallel finite element framework with Al modules for reduced order model development (2014 R&D 100 winner)
 RAVEN
 Model exploration, risk analyses and design optimizations for nuclear reactors, energy grids and other complex systems (2023 R&D 100 winner)

DeepLynx Digital twin and digital engineering framework to ontologically collect data and push control commands (central to INL's twin successes)

SEARCH Emerging **AI framework** to store, explore, assess, reduce, confirm, and holistically analyze data for automated initial machine learning results

DICE 2024 the "Super Bowl" of Digital Engineering with ~200 in-person attendees

FASST <u>AI Applications</u> for Nuclear, Security, and Integrated Energy

- Challenge 1: Accelerating the Licensing and Regulatory Process
- Challenge 2: Accelerating Deployment
- Challenge 3: Facilitating Autonomous
 Operation and Maintenance
- Challenge 4: Realizing Proactive Real-Time Energy System Operations
- Challenge 5: Building Cyber-and All-Hazards Resilient and Secure Energy Systems

